Inteligencia artificial (ia): formatos de aprendizaje en gestión de proyectos - una revisión sistemática de la literatura
Contenido principal del artículo
Sección
Resumen
La Inteligencia Artificial (IA) y los modelos de aprendizaje profundo (Deep Learning), en la actualidad son un campo de la computación y la informática que permite muchas aplicaciones e innovaciones en la investigación. En este sentido, para el área de la gestión de los proyectos, (campo multidisciplinario en muchas otras áreas), es imposible que el impacto de la Inteligencia Artificial no influya en sus áreas de conocimientos. Por lo tanto, el objetivo de este estudio es analizar el uso de la inteligencia artificial (IA) y sus modelos de aprendizaje profundo (Deep Learning) en gestión de proyectos y cómo puede aportar en la eficiencia de sus procesos. Respecto al método de estudio, se realizó una revisión sistemática de la literatura siguiendo el modelo Preferred Reporting Items for Systematic Literature Reviews and Meta-Analyses (PRISMA). En el proceso de la depuración bibliográfica se obtuvieron 58 estudios finales, de los cuales 32 se escogieron como fuentes primarias y 26 como fuentes segundarias. Por consiguiente, se emplearon tres fases: fase I=inicial, fase II=depuración y fase III=compilación, para escoger los artículos de 2,160 documentos encontrados entre las bases de datos de revistas de SCOPUS y SCISPACE.

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
##plugins.themes.bootstrap3.displayStats.downloads##
Detalles del artículo
Cómo citar
Referencias
Akinosho, T. D., Oyedele, L. O., Bilal, M., Ajayi, A. O., Delgado, M. D., Akinade, O. O., & Ahmed, A. A. (2020). Deep learning in the construction industry: A review of present status and future innovations. Journal of Building Engineering, 32, 101827. https://doi.org/10.1016/j.jobe.2020.101827
Auth, G., JokischPavel, O., & Dürk, C. (2019). Revisiting automated project management in the digital age – a survey of AI approaches. Online Journal of Applied Knowledge Management (OJAKM), 7(1), 27–39. https://doi.org/10.36965/OJAKM.2019.7(1)27-39
Behrooz, H., Lipizzi, C., Korfiatis, G., Ilbeigi, M., Powell, M., & Nouri, M. (2023). Towards Automating the Identification of Sustainable Projects Seeking Financial Support: An AI-Powered Approach. Sustainability, 15(12), 9701. https://doi.org/10.3390/su15129701
Belharet, A., Bharathan, U., Dzingina, B., Madhavan, N., Mathur, C., Toti, Y.-D. B., Markowski, K., & Babbar, D. (2020). Report on the Impact of Artificial Intelligence on Project Management. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3660689
Bokrantz, J., Subramaniyan, M., & Skoogh, A. (2023). Realising the promises of artificial intelligence in manufacturing by enhancing CRISP-DM. Production Planning & Control, 1–21. https://doi.org/10.1080/09537287.2023.2234882
Brennan, H. L., & Kirby, S. D. (2022). Barriers of artificial intelligence implementation in the diagnosis of obstructive sleep apnea. Journal of Otolaryngology - Head & Neck Surgery, 51(1), 16. https://doi.org/10.1186/s40463-022-00566-w
Čančer, V., Tominc, P., & Rožman, M. (2023). Multi-Criteria Measurement of AI Support to Project Management. IEEE Access, 11, 142816–142828. https://doi.org/10.1109/ACCESS.2023.3342276
Červený, L., Sloup, R., Červená, T., Riedl, M., & Palátová, P. (2022). Industry 4.0 as an Opportunity and Challenge for the Furniture Industry—A Case Study. Sustainability, 14(20), 13325. https://doi.org/10.3390/su142013325
Chang, Y., & Liang, Y. (2023). Intelligent Risk Assessment of Ecological Agriculture Projects from a Vision of Low Carbon. Sustainability, 15(7), 5765. https://doi.org/10.3390/su15075765
Ding, C., Huang, X., & Lin, Y. (2023). Optimization and application of artificial intelligence in robotic automated distribution network overhead line engineering. EAI Endorsed Transactions on Energy Web, 10. https://doi.org/10.4108/ew.3718
Dobos, O., & Csiszarik-Kocsir, A. (2022). The Role of Project Management in Cyber Warfare with the Support of Artificial Intelligence. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 17, 26–37. https://doi.org/10.55549/epstem.1175898
Duarte, J., Li, H., Roy, A., Zhu, R., Huerta, E. A., Diaz, D., Harris, P., Kansal, R., Katz, D. S., Kavoori, I. H., Kindratenko, V. V., Mokhtar, F., Neubauer, M. S., Eon Park, S., Quinnan, M., Rusack, R., & Zhao, Z. (2023). FAIR AI models in high energy physics. Machine Learning: Science and Technology, 4(4), 045062. https://doi.org/10.1088/2632-2153/ad12e3
El Khatib, M., & Al Falasi, A. (2021). Effects of Artificial Intelligence on Decision Making in Project Management. American Journal of Industrial and Business Management, 11(03), 251–260. https://doi.org/10.4236/ajibm.2021.113016
Engel, C., Ebel, P., & Van Giffen, B. (2021). Empirically Exploring the Cause-Effect Relationships of AI Characteristics, Project Management Challenges, and Organizational Change. In F. Ahlemann, R. Schütte, & S. Stieglitz (Eds.), Innovation Through Information Systems (Vol. 47, pp. 166–181). Springer International Publishing. https://doi.org/10.1007/978-3-030-86797-3_12
Esztergár-Kiss, D. (2023). Transportation Research Challenges Based on the Analysis of EU Projects. Promet - Traffic&Transportation, 35(4), 446–461. https://doi.org/10.7307/ptt.v35i4.181
Fahimullah, M., Faheem, Y., & Ahmad, N. (2019). Collaboration Formation and Profit Sharing Between Software Development Firms: A Shapley Value Based Cooperative Game. IEEE Access, 7, 42859–42873. https://doi.org/10.1109/ACCESS.2019.2908459
Havstorm, T. E., & Karlsson, F. (2023). Software developers reasoning behind adoption and use of software development methods – a systematic literature review. International Journal of Information Systems and Project Management, 11(2), 47–78. https://doi.org/10.12821/ijispm110203
Herremans, D. (2021). aiSTROM–A Roadmap for Developing a Successful AI Strategy. IEEE Access, 9, 155826–155838. https://doi.org/10.1109/ACCESS.2021.3127548
Holzmann, V., & Lechiara, M. (2022). Artificial Intelligence in Construction Projects: An Explorative Study of Professionals’ Expectations. European Journal of Business and Management Research, 7(3), 151–162. https://doi.org/10.24018/ejbmr.2022.7.3.1432
Khatun, M. T., Hiekata, K., Takahashi, Y., & Okada, I. (2023). Design and management of software development projects under rework uncertainty: A study using system dynamics. Journal of Decision Systems, 32(2), 265–288. https://doi.org/10.1080/12460125.2021.2023257
Khodabakhshian, A., Puolitaival, T., & Kestle, L. (2023). Deterministic and Probabilistic Risk Management Approaches in Construction Projects: A Systematic Literature Review and Comparative Analysis. Buildings, 13(5), 1312. https://doi.org/10.3390/buildings13051312
Lishner, I., & Shtub, A. (2022). Using an Artificial Neural Network for Improving the Prediction of Project Duration. Mathematics, 10(22), 4189. https://doi.org/10.3390/math10224189
Lung, L.-W., & Wang, Y.-R. (2023). Applying Deep Learning and Single Shot Detection in Construction Site Image Recognition. Buildings, 13(4), 1074. https://doi.org/10.3390/buildings13041074
Mahmood, A., Al Marzooqi, A., El Khatib, M., & AlAmeemi, H. (2023). How Artificial Intelligence can leverage Project Management Information system (PMIS) and data driven decision making in project management. International Journal of Business Analytics and Security (IJBAS), 3(1), 180–191. https://doi.org/10.54489/ijbas.v3i1.215
Matos, J. F., Piedade, J., Freitas, A., Pedro, N., Dorotea, N., Pedro, A., & Galego, C. (2023). Teaching and Learning Research Methodologies in Education: A Systematic Literature Review. Education Sciences, 13(2), 173. https://doi.org/10.3390/educsci13020173
Mishra, A., Tripathi, A., & Khazanchi, D. (2022). A Proposal for Research on the Application of AI/ML in ITPM: Intelligent Project Management. International Journal of Information Technology Project Management, 14(1), 1–9. https://doi.org/10.4018/IJITPM.315290
Nawaz, N. (2020). Exploring Artificial Intelligence Applications In Human Resource Management. 23(5).
Noteboom, C., Ofori, M., & Shen, Z. (2023). The Applications of Artificial Intelligence in Managing Project Processes and Targets: A Systematic Analysis. Journal of International Technology and Information Management, 31(3), 77–113. https://doi.org/10.58729/1941-6679.1558
Oliveira, B. A. S., De Faria Neto, A. P., Fernandino, R. M. A., Carvalho, R. F., Fernandes, A. L., & Guimaraes, F. G. (2021). Automated Monitoring of Construction Sites of Electric Power Substations Using Deep Learning. IEEE Access, 9, 19195–19207. https://doi.org/10.1109/ACCESS.2021.3054468
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Alonso-Fernández, S. (2021). Declaración PRISMA 2020: Una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología, 74(9), 790–799. https://doi.org/10.1016/j.recesp.2021.06.016
Prifti, V. (2022). Optimizing Project Management using Artificial Intelligence. European Journal of Formal Sciences and Engineering, 5(1), 30–38. https://doi.org/10.26417/667hri67
Sahadevan, S. (2023). Project Management in the Era of Artificial Intelligence. European Journal of Theoretical and Applied Sciences, 1(3), 349–359. https://doi.org/10.59324/ejtas.2023.1(3).35
Santillan Rojas, J. J., Cabezas Suazo, N. D., Chamorro Monago, J. J., & Aquino Fernandez, A. N. (2023). Artificial intelligence for the management of water projects and the management of water resources: A bibliographical analysis. Journal of Project Management, 8(3), 191–198. https://doi.org/10.5267/j.jpm.2023.2.002
Sarmento Dos Santos-Neto, J. B., & Costa, A. P. C. S. (2023). A Multi-Criteria Decision-Making Model for Selecting a Maturity Model: International Journal of Decision Support System Technology, 15(1), 1–15. https://doi.org/10.4018/IJDSST.319305
Sousa, A. O., Veloso, D. T., Gonçalves, H. M., Faria, J. P., Mendes-Moreira, J., Graça, R., Gomes, D., Castro, R. N., & Henriques, P. C. (2023). Applying Machine Learning to Estimate the Effort and Duration of Individual Tasks in Software Projects. IEEE Access, 11, 89933–89946. https://doi.org/10.1109/ACCESS.2023.3307310
Strang, K. D., & Vajjhala, N. R. (2023). Mining Project Failure Indicators From Big Data Using Machine Learning Mixed Methods: International Journal of Information Technology Project Management, 14(1), 1–24. https://doi.org/10.4018/IJITPM.317221
Taboada, I., Daneshpajouh, A., Toledo, N., & De Vass, T. (2023). Artificial Intelligence Enabled Project Management: A Systematic Literature Review. Applied Sciences, 13(8), 5014. https://doi.org/10.3390/app13085014
Taherdoost, H., & Madanchian, M. (2023). Artificial Intelligence and Knowledge Management: Impacts, Benefits, and Implementation. Computers, 12(4), 72. https://doi.org/10.3390/computers12040072
Tao, F., Pi, Y., Deng, M., Tang, Y., & Yuan, C. (2023). Research on Intelligent Grading Evaluation of Water Conservancy Project Safety Risks Based on Deep Learning. Water, 15(8), 1607. https://doi.org/10.3390/w15081607
Tomczak, M., & Jaśkowski, P. (2022). SCHEDULING REPETITIVE CONSTRUCTION PROJECTS: STRUCTURED LITERATURE REVIEW. JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT, 28(6), 422–442. https://doi.org/10.3846/jcem.2022.16943
Tominc, P., Oreški, D., Čančer, V., & Rožman, M. (2024). Statistically Significant Differences in AI Support Levels for Project Management between SMEs and Large Enterprises. AI, 5(1), 136–157. https://doi.org/10.3390/ai5010008
Tsaih, R.-H., Chang, H.-L., Hsu, C.-C., & Yen, D. C. (2023). The AI Tech-Stack Model. Communications of the ACM, 66(3), 69–77. https://doi.org/10.1145/3568026
Vărzaru, A. A. (2022). An Empirical Framework for Assessing the Digital Technologies Users’ Acceptance in Project Management. Electronics, 11(23), 3872. https://doi.org/10.3390/electronics11233872
Vial, G., Cameron, A., Giannelia, T., & Jiang, J. (2023). Managing artificial intelligence projects: Key insights from an AI consulting firm. Information Systems Journal, 33(3), 669–691. https://doi.org/10.1111/isj.12420
Wang, J. (2022). A Business Management Resource-Scheduling Method based on Deep Learning Algorithm. Mathematical Problems in Engineering, 2022, 1–9. https://doi.org/10.1155/2022/1122024
Wauters, M., & Vanhoucke, M. (2017). A Nearest Neighbour extension to project duration forecasting with Artificial Intelligence. European Journal of Operational Research, 259(3), 1097–1111. https://doi.org/10.1016/j.ejor.2016.11.018
Witte, F. (2022). Strategy, Planning and Organization of Test Processes: Basis for Successful Project Execution in Software Testing. Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-36981-1
Younis, M. S., & . E. (2022). THE BENEFITS OF ARTIFICIAL INTELLIGENCE IN CONSTRUCTION PROJECTS. Acta Informatica Malaysia, 6(2), 47–51. https://doi.org/10.26480/aim.02.2022.47.51
Yu, K., Froese, T., & Grobler, F. (2000). A development framework for data models for computer-integrated facilities management. Automation in Construction, 9(2), 145–167. https://doi.org/10.1016/S0926-5805(99)00002-3
Zeiner-Gundersen, D. H., & Winner, V. (n.d.). Intelligence (AI) Driven Algorithms When Addressing Project Costs and Risks.
Проскурін, В. М., Морозов, В. В., & Шелест, Т. М. (2019). THE MODEL OF IT PROJECT MANAGEMENT SYSTEM BASED ON MACHINE LEARNING. Bulletin of NTU “KhPI”. Series: Strategic Management, Portfolio, Program and Project Management, 0(1(1326)), 42–50. https://doi.org/10.20998/2413-3000.2019.1326.7
Selección de los años para esta investigación:
2023
(Taherdoost & Madanchian, 2023)
(Santillan Rojas et al., 2023)
(Khodabakhshian et al., 2023)
(Mahmood et al., 2023)
(Vial et al., 2023)
(Čančer et al., 2023)
(Behrooz et al., 2023)
(Esztergár-Kiss, 2023)
(Sarmento Dos Santos-Neto & Costa, 2023)
(Lung & Wang, 2023)
(Khatun et al., 2023)
(Duarte et al., 2023)
(Červený et al., 2022)
(Chang & Liang, 2023)
(Bokrantz et al., 2023)
(Tao et al., 2023)
(Tsaih et al., 2023)
2022
Wang, 2022)
(Vărzaru, 2022)
(Holzmann & Lechiara, 2022)
(Younis & ., 2022)
(Dobos & Csiszarik-Kocsir, 2022)
(Lishner & Shtub, 2022)
(Brennan & Kirby, 2022)
(Červený et al., 2022)
(Witte, 2022)
2021
(Engel et al., 2021)
(Herremans, 2021)
(Oliveira et al., 2021)
2020
(Akinosho et al., 2020)
(Belharet et al., 2020)
(Nawaz, 2020)
2019
(Fahimullah et al., 2019)
(Проскурін et al., 2019)